GALÁNTAI
ZOLTÁN
A szerencsétlen
dualista és a mesterséges intelligencia esete
Ez engem arra a taoista történetre
emlékeztet… ami valahogy így
hangzik: két bölcs álldogált
a hídon, a patak fölött. „De szeretnék hal
lenni, a halak olyan boldogok!” mondta
az egyik a másiknak. A másik azt
válaszolta erre, hogy „Honnét
tudod, vajon boldogok-e a halak vagy sem?
Hiszen te nem vagy hal.” Mire ismét
az elsõ szólalt meg: „De te viszont
nem vagy én, tehát honnét
is tudhatnád, vajon tudom-e, hogyan éreznek a halak?”
(Douglas R. Hofstadter: A Coffeehouse Conversation)
A logikatudós Raymond M. Smullyan egyik
elbeszélésének olyan
dualista a fõszereplõje,
aki meg van róla gyõzõdve, hogy a szellem és
az
anyag két különbözõ
dolog, eközben pedig rettenetesen szenved az e világi
léttõl. De öngyilkosságot
sem mer elkövetni, mert arra gondol, hogy milyen
gyötrelmek várnának
majd lelkére a túlvilágon. Idáig tehát
a szokványos
test-lélek problémáról
van szó.
A történet akkor válik
érdekessé, amikor felfedezik a végsõ
gyógyszert, és „ennek hatására
az ember lelke vagy szelleme tökéletesen
elpusztul ugyan, de a test pontosan úgy
fog funkcionálni, mint korábban.
Kívülrõl semmilyen különbséget
nem lehet megfigyelni: a test továbbra is
úgy viselkedik, mintha még
mindig lenne lelke” – mondja Smullyan. Úgyhogy
ezt a csodagyógyszert mintha éppen
a szerencsétlen dualistának találták
volna ki.
Aki persze el is határozza,
hogy kihasználja a lehetõséget, ám az
utolsó éjszakán belopózik
hozzá egy barátja, és hogy megszabadítsa
kínjaitól, injekció
formájában beadja neki a csodaszert. Másnap tehát
egyedül a test ébred fel, és
indul el megvenni a gyógyszert, és végül
egyedül a test kiált fel, amikor
a szernek már hatnia kellene, hogy de
hiszen „ez egyáltalán nem
segített rajtam! Továbbra is van lelkem, és
pontosan ugyanúgy szenvedek, mint
eddig!” Nem lehetséges-e, kérdezi a
novella zárómondatában
Smullyan gúnyosan, hogy „esetleg van valami kisebb
gond a dualizmussal”?
A történet két
okból is kapcsolódik a mesterséges intelligenciához
(méghozzá annak ún
„erõs változatához”, mely szerint egy megfelelõen
programozott számítógép
„szó szerint megért és egyéb kognitív
állapotokkal
rendelkezik”). Egyfelõl a mesterséges
intelligencia történetét is
végigkísérte a dualizmus
problémája. Másfelõl pedig az emberben óhatatlanul
ugyanez a kérdés merül
fel akkor is, ha kellõen nagy számú, a mesterséges
intelligencia mibenlétére
vonatkozó elmélettel találkozik. Mármint az,
hogy
nincsen-e valami kisebb gond a mesterséges
intelligencia elméleti
hátterével is.
Az egyik, meglehetõsen szélsõséges
álláspont szerint ugyanis, amit
például a mesterséges
intelligencia világhírû kutatója, John McCarthy
neve is
fémjelez, „olyan egyszerû
gépekrõl, mint a termosztát (sic!), elmondható,
hogy hiedelmeik vannak, és a hiedelmek
megléte jellemzõ a legtöbb
problémamegoldásra képes
gépre” is. A másik, bizonyos értelemben szintén
szélsõséges álláspont
képviselõi pedig, amikor az a kérdés, hogy
miért ne
volnának képesek gondolkodni
a digitális számítógépek is, válasz
helyett
(mint ahogy például a késõbbiekben
bemutatott John Searle is) az ember
valamiféle „belsõ intencionalitásáról”
és holmi „oki hajtóerõkrõl”
beszélnek. És teszik ezt
anélkül, hogy meg akarnák vagy meg tudnák mondani,
hogy pontosan mit is értenek ezen
fogalmak alatt. Legfõképpen pedig az nem
derül ki, hogy kicsoda vagy micsoda
rendelkezhet mondjuk a belsõ
intencionalitással. Az egyik felfogás
végtelenül kitágítja, a másik
végtelenül beszûkíti
a gondolkodó gépek fogalmát, de egyik sem boldogul
azzal a problémával, hogy
mi is a megértés valójában.
A mesterséges intelligencia
helyzete persze bizonyos értelemben
egyedülálló. Méghozzá
azért, mert itt minden az értelmezésen múlik
. Itt
maga a központi fogalom is kérdéses:
az, hogy pontosan mit is értsünk
értelem (akár természetes,
akár mesterséges értelem) alatt, és semmi nem
garantálja, hogy amit az egyik tábor
perdöntõ kísérletnek fogad el, azt a
másik nem gúnyolja majd ki.
A mesterséges intelligencia bizonyos
tekintetben még sokkal elvontabb
és kevésbé kézzelfogható problémákkal
foglalkozik, mint a kvantumfizika, így
aztán sokkal több múlik a különbözõ
definíciókon, megállapodásokon,
kimondott vagy kimondatlan
elõfeltevéseken.
Az olyanokon, mint például
az is, hogy milyen a test és a
lélek (az anyag és a szellem,
az agy és a gondolkodás, sõt a hardver és a
szoftver) egymáshoz való
viszonya. És bár végsõ soron valószínûleg
túlzó
leegyszerûsítés volna
erre az egyetlen kérdésre visszavezetni az egész,
végtelenül szövevényes
és olykor határozottan önellentmondásos
problémakört, a történeti
szempontokat is figyelembe véve elsõ
megközelítésben azért
érdemes ezzel kezdeni.
Méghozzá egészen
a XVII. század elejéig visszamenve, amikor is a
Galilei-féle új fizika azzal
a feltételezéssel élt, hogy az igazság a
„matematika nyelvén” van megírva
(egészen pontosan az absztrakt
geometriáén). Ami a késõbbiekben
továbbfejlesztve átfogalmazható lesz úgy
is, hogy például a képletek
használata azért célravezetõ, mert ezek magát
a valóságot és a valóságban
létezõ összefüggéseket írják
le. Egyáltalán nem
idegen a modern európai gondolkodástól
az a meggyõzõdés, mely szerint a
természet matematikai összefüggéseken
keresztül megnyilvánuló
szabályosságainak tanulmányozása
azonos (vagy legalább egyenrangú) magának
a természetnek a tanulmányozásával
. A geometriai szimbólumok manipulációja
révén az új fizika
szerint a valóságról tudunk meg dolgokat, és
innét már
csak egylépésnyire van annak
a „mesterséges intelligencia nagyapjának”
nevezett Thomas Hobbesnak a felfogása,
aki 1634-ben keresztülutazott egész
Itálián, hogy Galileivel
találkozhasson, és aki végsõ soron arra
törekedett, hogy a politika tudományát
ugyanolyan szilárd és megbízható
alapokra helyezze, mint amilyenre Galilei
helyezte a fizikát.
Õ abból indult ki,
hogy a gondolkodás (is) szimbólumkezelés, miként
az a hangokból felépülõ
beszéd vagy a papíron történõ számolás,
csak éppen
ilyenkor speciális, „agyi szimbólumokon”
végzünk mûveleteket. Ennek
megfelelõen a gondolkodásunk
akkor a legtisztább és leglogikusabb,
amennyiben ugyanúgy szabályokat
követ, mintha számolnánk. A dolog egyébként
mechanikus: afféle mentális
abakuszon végrehajtott mûveletek sora. A
matematikusok ugyanazzal foglalkoznak,
mint a geometria mûvelõi, a
logikatudósok pedig nem tesznek
mást, mint szavakból állításokat,
állításokból
szillogizmusokat és szillogizmusokból bizonyításokat
raknak
össze. „A következtetésen
számolást értek”, mondta Hobbes.
Részben ennek a felfogásnak
a hatására hitték azt még az 1950-es
évek mesterséges intelligenciával
foglalkozó kutatói is, hogy ha lesz egy
nemzetközi nagymesteri szinten sakkozó
számítógép, akkor az tulajdonképpen
intelligens lesz. Mivel ugyanis a sakk
a lehetõ leglogikusabb játék,
vélték, a logikai szabályok
szigorú követése pedig tulajdonképpen maga a
gondolkodás, a sakkozni képes
gépek szükségképpen gondolkodnak is. Amit ma
már persze senki nem venne komolyan,
hiszen a Kaszparovot legyõzõ Deep
Blue-tól mi sem áll távolabb
az emberi értelemben vett gondolkodásnál.
Közönséges célgép
ez, semmi más .
És különben is:
az egész szimbólumkezeléses elmélettel van
egy
alapvetõ probléma, méghozzá
az, hogy nem tudja megmagyarázni, miként jön
létre az eredetileg jelentés
nélküli szimbólumok manipulálásából
a
megértés, azaz, hogy miben
különbözik mondjuk az elme és egy abakusz. Mert
az, hogy alapvetõ eltérés
van közöttük, kétségtelen: az elme érti
a
szimbólumokat, amiken mûveleteket
végez, az abakusz nem. A beszéd vagy az
írás kizárólag
akkor bír jelentéssel, ha megértés áll
mögötte, tehát vagy a
hobbesi, szimbólummanipuláción
alapuló „belsõ beszédet” is visszavezetjük
valamire, ami képes felfogni a szimbólumok
jelentését (és ami nyilvánvalóan
nem szimbólummanipuláción
keresztül dolgozik), vagy nem jöhet létre a
megértés. Már amennyiben
egyáltalán valóban a szimbólumkezelést
használja
az agyunk, hiszen az egyik lehetõség
ennek az elméletnek a teljes elvetése
volna.
De még mielõtt megvizsgálnánk
ezt, haladjunk tovább a Hobbes-féle
úton egészen Descartes-ig,
aki legalább Hobbeshoz hasonlóan fontos szerepet
játszik a mesterséges intelligencia
történetében, és aki azt az elsõ
ránézésre témánktól
meglehetõsen messze esõ megállapítást
tette, hogy
minden geometriai probléma megoldható
matematikai eszközökkel. Ebbõl
azonban arra is következtetett, hogy
az addigra már geometrizált fizika is
leírható az algebra segítségével;
és végül arra is, hogy a geometria, az
algebra és a fizika mindegyike „alkalmazott
matematika” csupán, ahol a
matematika mint olyan nem kötõdik
valamilyen konkrét anyaghoz vagy
problémához. Ekkor viszont
minden leírható vele: akár a gondolkozás is.
Tehát a gondolatokat is „szimbolikus
reprezentációk”-nak tekinthetjük, és
ugyanaz igaz rájuk is, mint a számukra
modellül szolgáló matematikai
szimbólumokra. Ugyanúgy nem
kötõdnek az õket hordozó anyaghoz, mint ahogy
a
matematika sem. A gondolkodás független
az õt hordozó anyagtól.
És ezzel már majdnem
el is érkeztünk az 1950-es évek mesterséges
intelligenciájáig, Descartes
ugyanis kijelenti, hogy a gépek azért nem
képesek gondolkodni, mert képtelenek
racionálisan manipulálni a
szimbólumokat. Vagyis: ami képes
erre, az gondolkodik. Vagyis: ha lenne egy
gép, ami képes volna erre,
akkor az gondolkodna is. Igazán nem nehéz a
descartes-i gondolkodó gépet
a XX. század komputereiben felfedezni, elvégre
ezek racionálisan, a matematika
szabályaival összhangban végeznek
mûveleteket a beléjük
táplált adatokon: a szimbólumokon.
Ekkor azonban még mindig van
két alapvetõ problémánk. Az egyik az,
hogy a gondolkodó számítógép
létének elfogadásához hinnünk kell abban
is,
hogy a gondolkodás valóban
szimbólumok manipulása és semmi több – a másik
probléma pedig ugyanaz, mint Hobbes
esetében is volt, tehát az, hogy
továbbra sem tudjuk, hol és
hogyan jön létre a megértés. Nem tudunk
válaszolni rá, hogy amikor
a számítógép értelem nélküli
szimbólumokat rak
egymás mellé, akkor miért
és hogyan értené meg, hogy most mondjuk egy
összeadást végez el,
most pedig valami mást csinál. Sõt, a descartes-i
modell esetében egy embernél
sem tudjuk.
Ami Alan Turing, a neves angol matematikus
szerint nem is olyan
nagy baj. Nem azt kell ugyanis kérdezni,
hogy miért vagy hogyan gondolkodik
akár az ember, akár a gép,
hanem azt, hogy milyen az, ha valaki (vagy
valami) értelmesen viselkedik. A
tudomány mindig is „fekete doboz”
problémákkal foglalkozott,
azaz olyan helyzetekkel, ahol nem tudjuk, hogy
mi van odabent, és a kijövõ
jelekbõl póbálunk csak következtetni rá
– miért
ne tennénk hát most is ezt.
Méghozzá úgy, hogy elmondhassuk: ez a vizsgálat
„meglehetõsen éles vonalat
húz az ember fizikai és intellektuális
képességei közé”.
És ez indokolt is, hiszen ahogy egy ember sem kelhetne
versenyre egy repülõgéppel,
egy géptõl sem lehet (vagy legalábbis nincsen
értelme) elvárni, hogy ugyanolyan
legyen, mint mi.
Nem kell hát mást tennünk,
mint továbbfejleszteni az ún. imitációs
játékot, amiben az erdeti
változat szerint hárman vesznek részt: egy férfi,
egy nõ és egy kérdezõ.
Ezek nem láthatják és nem hallhatják egymást,
és
ketten közülük írásban
(vagy egy számítógép klaviatúráján
keresztül)
érintkeznek a harmadikkal: a kérdezõvel,
akinek azt kell kiderítenie, hogy
partnerei közül melyik milyen
nemû (miközben azok megpróbálhatják minden
lehetséges módon félrevezetni).
A férfit vagy a nõt
egy komputerrel helyettesítve a kérdés az lesz,
hogy meg tudjuk-e különböztetni
egymástól az embert és a gépet az írott
válaszok alapján. Turing
szerint amennyiben a komputer az emberétõl
megkülönböztethetetlen válaszokat
ad, akkor ugyanolyan intelligensnek kell
tekintenünk, mint amilyenek mi magunk
vagyunk. És bár „szemtõl szemben”
rögtön rájönnénk,
hogy nem emberrel, hanem géppel van dolgunk, szerinte ez
nem sokat nyom a latban, hiszen ha a gondolkodás
független az anyagtól,
akkor a külalak is lényegtelen,
és késõbb Joseph Weizenaum valóban leírja,
hogy miként lehetne számítógépet
készíteni egy guriga WC-papír meg egy
csomó kavics fehasználásával.
Amennyiben Turing elképzelése helyes, és
amennyiben ez a rendszer is képes
átmenni az általa kidolgozott teszten,
akkor ezt is értelmesek kell tekintenünk.
Ami ugyan meglehetõsen képtelenül
hangzik, de ez önmagában még nem
lehetne érv a Turing-teszt ellen.
Akkor már inkább az, hogy (miként azt
maga Turing is elismeri), a digitális
számítógépek ugyan ún. univerzális
Turing-automaták is (ami azt jelenti,
hogy a rendelkezésükre álló
erõforrásoktól, kapacitástól,
stb. függõen hosszabb-rövidebb idõ alatt
bármelyik digitális számítógép
bármelyik másikat képes önmagában
„modellezni”) – viszont a világ
nem kizárólag digitális számítógépekbõl
áll. Az emberi agy például
nem az, és bár Turing egy meglehetõsen
erõltetett megoldást ajánl,
valójában több mint kétséges, hogy képes
lehet-e egy digitális számítógép
(ami ún. véges állapotú automata)
tökéletesen modellezni az emberi
agyat (vagyis egy nem véges állapotú
automatát), ami egyszerûen
másmilyen.
Persze visszavághatunk azzal,
hogy a Turing-tesztben nem is az
számít, a gép tökéletesen
a miénkkel azonos okokból kifolyólag hozza-e
létre a (legalább látszólag
értelmes) válaszokat. Azaz nem számít, mi módon
jut el oda, hogy intelligensnek tûnjön,
hiszen a gondolkodás független az
anyagtól, és különben
is: mivel nem tudjuk elõre, hogy valami értelmes-e
vagy sem (elvégre fekete dobozzal
van dolgunk), ezért éppen ennek a
tesztnek a kimenetelétõl
függ minden.
Turing azzal mentegetõzik,
hogy „Nem akarom azt a benyomást
kelteni, mintha úgy gondolnám,
nincsen semmi rejtélyes a tudatosságban…
De nem hinném, hogy ezeket a rejtélyeket
fel kellene oldani ahhoz, hogy
válaszolni tudjunk… a kérdésre”,
ez azonban valójában csak a probléma
megkerülése. A Turing-tesztbõl
ugyanis nem derül ki, hogy miképpen jön
létre az intelligencia, és
egyáltalán nem is lehetünk benne biztosak, hogy
az akadályt sikerrel vevõ
számítógép valójában bármit
is ért a kérdésekbõl:
hogy nem csupán szimulálja-e
az értelmes válaszokat. Határozottan
hiteltelennek tûnhet a számunkra
egy olyan, a mesterséges intelligencia
mibenlétével foglalkozó
teszt, ami éppen a mesterséges intelligencia
legfontosabb problémáival
nem foglalkozik, vagyis azzal, hogy miként
keletkezik és micsoda is valójában
az értelem.
Erre egyébként a másik
híres gondolatkísérlet (és másik véglet),
az
a Searle-féle „kínai szoba”
sem képes válaszolni, ami egyébként mintha
a
Turing-teszt hatására jött
volna létre – afféle ellentetsztként. Ha Turing
azt írta egy helyütt, hogy
a gépi intelligenciában való szélsõséges
kételkedés ahhoz a képtelen
eredményhez vezet, hogy azt kell állítanunk:
„az egyetlen módszer meggyõzõdnünk
róla, vajon egy gép gondolkodik-e, az, ha
magunk is gépek vagyunk és
gondolkodunk”, akkor a kínai szoba éppen ezt a
helyzetet kívánja modellezni,
illetve azt bebizonyítani, hogy a gépek
legfeljebb szimulálják a
megértést, de igazából nem képesek rá.
Képzeljük el, mondja
Searle, hogy egy szobában vagyunk, és valaki
céulákra írt, kínai
nyelvû kérdéseket dug be az ajtó alatt, amiket
mi
egyáltalán nem értünk.
Van viszont egy szabálykönyvünk, amibõl
megtudhatjuk, hogy egy adott jelsorozatra
milyen jelek sorozatával kell
válaszolnunk, vagyis egyszerûen
végrehajtunk egy olyan utasítássorozatot,
ami számunkra nem jelent semmit.
A kinti ember válaszainkat elolvasva mégis
azt fogja hinni, hogy tudunk kínaiul.
Ám eközben nem jön létre a megértés:
sem mi nem értjük a kérdéseket,
sem pedig a szabálykönyv. És mivel most
tulajdonképpen a komputer mûködését
modelleztük, senki nem mondhatja, hogy
a számára értelemmel
nem bíró jeleket manipuláló gép értené,
hogy mirõl van
szó. Ha pedig valaki azt állítaná,
hogy bár mi magunk nem tudunk kínaiul, a
külvilág felõl egyetlen,
egységes rendszernek látszó kínai szoba viszont
igen, akkor ezt a legegyszerûbben
úgy cáfolhatjuk meg, hogy kívülrõl
megtanuljuk a könyvben szereplõ
szabályrendszert, azt, hogy mondjuk a
„kriksz, kriksz” után a „kraksz,
kraksz” következik. Így már a szobára
sincsen szükség: nyugodtan
sétálgathatunk a szabad ég alatt, és
válaszolhatunk a kínai nyelvû
kérdésekre anélkül, hogy bármit is értenénk.
Azaz nem lehetséges, mondja Searle,
hogy „valami gondolkodik, megért és a
többi, kizárólag annak
köszönhetõen, hogy egy megfelelõ programmal ellátott
számítógép…
a formális szimbólumok kezelése önmagában
nem rendelkezik
intencionalitással… a szimbólumok
nem szimbolizálnak semmit. Nyelvészeti
szóhasználattal élve
csak szintaxisuk van, szemantikájuk nincs”, és noha
egy rendszer bizonyos területeken
egészen emberi képességekkel is
rendelkezhet (például az
asztali számológépek képesek az összeadásra),
ebbõl
még nem következik, hogy rendelkezniük
kell intencionalitással is.
Tehát mintha végre
tudnánk a helyes válaszokat – két nem is olyan
apró szépséghibától
eltekintve. Az egyik az az, hogy immár még annyi
eszközünk sincsen az értelmesség
meghatározására, mint eddig: Searle
mindössze annyit képes mondani,
hogy „csak olyasvalami lehet intencionális,
ami rendelkezik ilyen [az emberére
hasonlító] oki hajtóerõvel”, illetve
azt, hogy ez egyáltalán nem
független az anyagtól. Searle a gondolkodás és
az agy eddigi, dualista szétválasztása
helyett azt javasolja, ne tekintsük
lényegtelennek, hogy milyen biológiai,
illetve kémiai folyamatok hozták
létre a gondolkozásra is
alkalmas emberi agyat, és ezzel implicit módon
arra a mesterséges intelligenciát
régóta gyötrõ kérdésre is választ
ad,
hogy mi okom volna feltételezni
például nekem, hogy rajtam kívül bárki
más
képes gondolkodni?
Az ismeretelméleti szkepticizmus
szerint természetesen semmi, és
ezt az álláspontot leginkább
azért szokták elvetni, mert a mesterséges
intelligencia kutatásának
szempontjából terméketlen és sehová
sem vezet
(nem mintha ez tudományos érv
volna). Searle megközelítése viszont azt
sugallja, hogy a többi embernek azért
kell gondolkodó lénynek lennie,
amiért mi is azok vagyunk: mert
a többi ember is ugyanazokból az
anyagokból, ugyanolyan struktúrával
épül fel. Tehát mivel
szétválaszthatatlan kapcsolat
van az anyag és az értelem között, a
többieknek is gondolkozniuk kell.
Ez idáig logikusnak tûnik,
csak éppen túl azon, hogy megtudjuk, „az
intencionalitás, bármi legyen
is az, biológiai jelenség, és mint ilyen,
okozatilag függ keletkezésének
sajátos biokémiájától”, az nem derül
ki,
hogy mi is az az intencionalitás,
és mi is az a sajátos biokémia. A
mesterséges intelligencia így
mintha azzal a megállapítással lenne csak
gazdagabb, hogy az ember egészen
biztosan gondolkodó teremtmény, a mostani,
szimbolumkezelésen alapuló
számítógépek pedig nem azok…
Ez volna hát az egyik probléma,
a másik pedig az, hogy Searle
elsiklik olyan, alapvetõ fontosságú
technikai részletek felett, amik pedig
az ellentábor szerint az egész
okoskodás kimenetelét megváltoztatnák.
Amikor azt mondja, hogy kínai szobában
üldögélõ” személy tegye belsõvé
a
rendszer minden elemét. Memorizálja
a könyvbõl a szabályokat és a kínai
szimbólumok adatbankjait, továbbá
minden számítást fejben végezzen el”,
akkor egyszerûen eltekint attól,
hogy erre egyetlen ember sem lenne képes,
mondja Daniel C. Dennett és Douglas
R. Hofstadter. Ráadásul Searle „a
komplexitás számos szintjét
ugrotta át” állításainak alátámasztásához
érvelés közben máskor
is. Hiszen még a legfejlettebb mesterséges
intelligenciának is döbbenetesen
hosszú idõbe tellene megtalálnia egy-egy
helyes választ (ha ugyan egyáltalán
képes volna rá), mi pedig a kínai szoba
leírását olvasva úgy
érezhetjük, mintha „kínaiul értõként”
viselkednénk,
pedig egy valós helyzetben nem képzelnénk
ezt. És ez azért is alapvetõ
hiba, mert a megoldás kulcsa Dennett
és Hofstadter szerint a „rendszerelvû”
válasz. Az, hogy a kínai
szoba esetében az intelligencia nem az egyes
elemekben rejlik, hanem a rendszer egészében,
mint ahogy az embernél sem az
egyes neuronok gondolkoznak, hanem az agy.
A gondolkodáshoz viszont
hatalmas komplexitás kell.
Szó, ami szó, elsõ
hallásra egyszerû és meggyõzõ elmélet
ez –
megváltoztathatja viszont a helyzetet,
ha egy „redukált kínai szobát”
gondolunk el, vagyis egy olyan szituációt,
amikor a szabályok valóban
megtanulhatóak (mert a meglehetõsen
mesterségesen megválasztott kísérleti
körülményeknek megfelelõen
mondjuk mindössze pár száz lehetséges kérdésre
kell felkészülni). Ekkor a
redukált kínai szobában tartózkodó ember
valóban
rendszerként fog viselkedni, elvégre
tényleg „fejbõl tudja” a bejövõ
krikszkrakszokra adandó válaszokat,
viszont továbbra sem fog érteni semmit.
És bár erre Dennet és
Hofstadter talán azt válaszolnák, hogy ha viszont
az
eredeti modellben szereplõ, bonyolult
válaszrendszert kellene megtanulni,
akkor a komplexitás mégis
létrehozná a megértést, ezt nem biztos, hogy
mindenki nagyon erõs érvnek
fogja tekinteni. Hiszen semmi nem szól
mellette.
Ráadásul az, hogy miként
jönne létre a megértés, és hogy végsõ
soron
mi is az intelligencia, a rendszerelvû
megközelítésbõl sem derül ki. Pedig
ezek volnának a mesterséges
intelligencia alapkérdései. A
szimbólummanipuláció
hívei sem boldogultak ezzel a kérdéssel, és
Searle sem
– most pedig ez a megközelítés
is csupán annyit állít, hogy megfelelõ
komplexitás esetén majd úgyis
megjelenik az értelem (Searle-nél ennek a
feltételezésnek az felelt
meg, hogy a megfelelõ anyag esetén fog létrejönni
az intenció, és a „megfelelõ
anyagba” bátran beleérthetjük az anyag
megfelelõ komplexitását
is ).
Csupán gondolatkísérletek,
logikai bûvészmutatványok és hasonlatok
vannak tehát a birtokunkban, nem
pedig magyarázatok: mintha a mesterséges
intelligencia egész filozófiája
sem szólna másról. Mintha megint ott
tartanánk, ahol a kezdet kezdetén,
amikor a Smullyan szerencsétlen
dualistájával kapcsolatos,
ravaszul kifundált logikai problémán kellett
eltûnõdnünk, és
nem is tudjuk, hogy mit gondolunk a mesterséges
intelligenciáról. Nem véletlenül
fogalmazott úgy már az 1980-as évek elején
a számítógéptudós
Alan. J. Perlis, hogy „Egy, a mesterséges intellegencia
tanulmányozásával
töltött év elég ahhoz, hogy bárkit istenhívõvé
tegyen.”
De legalább abban azért
biztosak vagyunk, hogy gondolunk valamit a
mesterséges intelligenciáról.
Észrevételeit, megjegyzéseit,
kérjük, küldje el postafiókunkba:
beszelo@c3.hu
C3 Alapítvány
c3.hu/scripta/